3.2.19 \(\int (a g+b g x) (c i+d i x)^2 (A+B \log (e (\frac {a+b x}{c+d x})^n)) \, dx\) [119]

3.2.19.1 Optimal result
3.2.19.2 Mathematica [A] (verified)
3.2.19.3 Rubi [A] (verified)
3.2.19.4 Maple [B] (verified)
3.2.19.5 Fricas [B] (verification not implemented)
3.2.19.6 Sympy [B] (verification not implemented)
3.2.19.7 Maxima [B] (verification not implemented)
3.2.19.8 Giac [B] (verification not implemented)
3.2.19.9 Mupad [B] (verification not implemented)

3.2.19.1 Optimal result

Integrand size = 41, antiderivative size = 250 \[ \int (a g+b g x) (c i+d i x)^2 \left (A+B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )\right ) \, dx=\frac {B (b c-a d)^3 g i^2 n x}{12 b^2 d}+\frac {B (b c-a d)^2 g i^2 n (c+d x)^2}{24 b d^2}-\frac {B (b c-a d) g i^2 n (c+d x)^3}{12 d^2}-\frac {(b c-a d) g i^2 (c+d x)^3 \left (A+B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )\right )}{3 d^2}+\frac {b g i^2 (c+d x)^4 \left (A+B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )\right )}{4 d^2}+\frac {B (b c-a d)^4 g i^2 n \log \left (\frac {a+b x}{c+d x}\right )}{12 b^3 d^2}+\frac {B (b c-a d)^4 g i^2 n \log (c+d x)}{12 b^3 d^2} \]

output
1/12*B*(-a*d+b*c)^3*g*i^2*n*x/b^2/d+1/24*B*(-a*d+b*c)^2*g*i^2*n*(d*x+c)^2/ 
b/d^2-1/12*B*(-a*d+b*c)*g*i^2*n*(d*x+c)^3/d^2-1/3*(-a*d+b*c)*g*i^2*(d*x+c) 
^3*(A+B*ln(e*((b*x+a)/(d*x+c))^n))/d^2+1/4*b*g*i^2*(d*x+c)^4*(A+B*ln(e*((b 
*x+a)/(d*x+c))^n))/d^2+1/12*B*(-a*d+b*c)^4*g*i^2*n*ln((b*x+a)/(d*x+c))/b^3 
/d^2+1/12*B*(-a*d+b*c)^4*g*i^2*n*ln(d*x+c)/b^3/d^2
 
3.2.19.2 Mathematica [A] (verified)

Time = 0.13 (sec) , antiderivative size = 224, normalized size of antiderivative = 0.90 \[ \int (a g+b g x) (c i+d i x)^2 \left (A+B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )\right ) \, dx=\frac {g i^2 \left (\frac {4 B (b c-a d)^2 n \left (2 b d (b c-a d) x+b^2 (c+d x)^2+2 (b c-a d)^2 \log (a+b x)\right )}{b^3}-\frac {B (b c-a d) n \left (6 b d (b c-a d)^2 x+3 b^2 (b c-a d) (c+d x)^2+2 b^3 (c+d x)^3+6 (b c-a d)^3 \log (a+b x)\right )}{b^3}-8 (b c-a d) (c+d x)^3 \left (A+B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )\right )+6 b (c+d x)^4 \left (A+B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )\right )\right )}{24 d^2} \]

input
Integrate[(a*g + b*g*x)*(c*i + d*i*x)^2*(A + B*Log[e*((a + b*x)/(c + d*x)) 
^n]),x]
 
output
(g*i^2*((4*B*(b*c - a*d)^2*n*(2*b*d*(b*c - a*d)*x + b^2*(c + d*x)^2 + 2*(b 
*c - a*d)^2*Log[a + b*x]))/b^3 - (B*(b*c - a*d)*n*(6*b*d*(b*c - a*d)^2*x + 
 3*b^2*(b*c - a*d)*(c + d*x)^2 + 2*b^3*(c + d*x)^3 + 6*(b*c - a*d)^3*Log[a 
 + b*x]))/b^3 - 8*(b*c - a*d)*(c + d*x)^3*(A + B*Log[e*((a + b*x)/(c + d*x 
))^n]) + 6*b*(c + d*x)^4*(A + B*Log[e*((a + b*x)/(c + d*x))^n])))/(24*d^2)
 
3.2.19.3 Rubi [A] (verified)

Time = 0.40 (sec) , antiderivative size = 234, normalized size of antiderivative = 0.94, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.122, Rules used = {2961, 2782, 27, 86, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (a g+b g x) (c i+d i x)^2 \left (B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )+A\right ) \, dx\)

\(\Big \downarrow \) 2961

\(\displaystyle g i^2 (b c-a d)^4 \int \frac {(a+b x) \left (A+B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )\right )}{(c+d x) \left (b-\frac {d (a+b x)}{c+d x}\right )^5}d\frac {a+b x}{c+d x}\)

\(\Big \downarrow \) 2782

\(\displaystyle g i^2 (b c-a d)^4 \left (-B n \int -\frac {(c+d x) \left (b-\frac {4 d (a+b x)}{c+d x}\right )}{12 d^2 (a+b x) \left (b-\frac {d (a+b x)}{c+d x}\right )^4}d\frac {a+b x}{c+d x}-\frac {B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )+A}{3 d^2 \left (b-\frac {d (a+b x)}{c+d x}\right )^3}+\frac {b \left (B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )+A\right )}{4 d^2 \left (b-\frac {d (a+b x)}{c+d x}\right )^4}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle g i^2 (b c-a d)^4 \left (\frac {B n \int \frac {(c+d x) \left (b-\frac {4 d (a+b x)}{c+d x}\right )}{(a+b x) \left (b-\frac {d (a+b x)}{c+d x}\right )^4}d\frac {a+b x}{c+d x}}{12 d^2}-\frac {B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )+A}{3 d^2 \left (b-\frac {d (a+b x)}{c+d x}\right )^3}+\frac {b \left (B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )+A\right )}{4 d^2 \left (b-\frac {d (a+b x)}{c+d x}\right )^4}\right )\)

\(\Big \downarrow \) 86

\(\displaystyle g i^2 (b c-a d)^4 \left (\frac {B n \int \left (\frac {d}{b^3 \left (b-\frac {d (a+b x)}{c+d x}\right )}+\frac {d}{b^2 \left (b-\frac {d (a+b x)}{c+d x}\right )^2}+\frac {d}{b \left (b-\frac {d (a+b x)}{c+d x}\right )^3}-\frac {3 d}{\left (b-\frac {d (a+b x)}{c+d x}\right )^4}+\frac {c+d x}{b^3 (a+b x)}\right )d\frac {a+b x}{c+d x}}{12 d^2}-\frac {B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )+A}{3 d^2 \left (b-\frac {d (a+b x)}{c+d x}\right )^3}+\frac {b \left (B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )+A\right )}{4 d^2 \left (b-\frac {d (a+b x)}{c+d x}\right )^4}\right )\)

\(\Big \downarrow \) 2009

\(\displaystyle g i^2 (b c-a d)^4 \left (-\frac {B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )+A}{3 d^2 \left (b-\frac {d (a+b x)}{c+d x}\right )^3}+\frac {b \left (B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )+A\right )}{4 d^2 \left (b-\frac {d (a+b x)}{c+d x}\right )^4}+\frac {B n \left (\frac {\log \left (\frac {a+b x}{c+d x}\right )}{b^3}-\frac {\log \left (b-\frac {d (a+b x)}{c+d x}\right )}{b^3}+\frac {1}{b^2 \left (b-\frac {d (a+b x)}{c+d x}\right )}+\frac {1}{2 b \left (b-\frac {d (a+b x)}{c+d x}\right )^2}-\frac {1}{\left (b-\frac {d (a+b x)}{c+d x}\right )^3}\right )}{12 d^2}\right )\)

input
Int[(a*g + b*g*x)*(c*i + d*i*x)^2*(A + B*Log[e*((a + b*x)/(c + d*x))^n]),x 
]
 
output
(b*c - a*d)^4*g*i^2*((b*(A + B*Log[e*((a + b*x)/(c + d*x))^n]))/(4*d^2*(b 
- (d*(a + b*x))/(c + d*x))^4) - (A + B*Log[e*((a + b*x)/(c + d*x))^n])/(3* 
d^2*(b - (d*(a + b*x))/(c + d*x))^3) + (B*n*(-(b - (d*(a + b*x))/(c + d*x) 
)^(-3) + 1/(2*b*(b - (d*(a + b*x))/(c + d*x))^2) + 1/(b^2*(b - (d*(a + b*x 
))/(c + d*x))) + Log[(a + b*x)/(c + d*x)]/b^3 - Log[b - (d*(a + b*x))/(c + 
 d*x)]/b^3))/(12*d^2))
 

3.2.19.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 86
Int[((a_.) + (b_.)*(x_))*((c_) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_ 
.), x_] :> Int[ExpandIntegrand[(a + b*x)*(c + d*x)^n*(e + f*x)^p, x], x] /; 
 FreeQ[{a, b, c, d, e, f, n}, x] && ((ILtQ[n, 0] && ILtQ[p, 0]) || EqQ[p, 1 
] || (IGtQ[p, 0] && ( !IntegerQ[n] || LeQ[9*p + 5*(n + 2), 0] || GeQ[n + p 
+ 1, 0] || (GeQ[n + p + 2, 0] && RationalQ[a, b, c, d, e, f]))))
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2782
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(x_)^(m_.)*((d_) + (e_.)*(x_))^(q 
_), x_Symbol] :> With[{u = IntHide[x^m*(d + e*x)^q, x]}, Simp[(a + b*Log[c* 
x^n])   u, x] - Simp[b*n   Int[SimplifyIntegrand[u/x, x], x], x]] /; FreeQ[ 
{a, b, c, d, e, n}, x] && ILtQ[m + q + 2, 0] && IGtQ[m, 0]
 

rule 2961
Int[((A_.) + Log[(e_.)*(((a_.) + (b_.)*(x_))/((c_.) + (d_.)*(x_)))^(n_.)]*( 
B_.))^(p_.)*((f_.) + (g_.)*(x_))^(m_.)*((h_.) + (i_.)*(x_))^(q_.), x_Symbol 
] :> Simp[(b*c - a*d)^(m + q + 1)*(g/b)^m*(i/d)^q   Subst[Int[x^m*((A + B*L 
og[e*x^n])^p/(b - d*x)^(m + q + 2)), x], x, (a + b*x)/(c + d*x)], x] /; Fre 
eQ[{a, b, c, d, e, f, g, h, i, A, B, n, p}, x] && NeQ[b*c - a*d, 0] && EqQ[ 
b*f - a*g, 0] && EqQ[d*h - c*i, 0] && IntegersQ[m, q]
 
3.2.19.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(836\) vs. \(2(236)=472\).

Time = 4.76 (sec) , antiderivative size = 837, normalized size of antiderivative = 3.35

method result size
parallelrisch \(\frac {24 B \,x^{2} \ln \left (e \left (\frac {b x +a}{d x +c}\right )^{n}\right ) a \,b^{3} c \,d^{3} g \,i^{2} n +24 B x \ln \left (e \left (\frac {b x +a}{d x +c}\right )^{n}\right ) a \,b^{3} c^{2} d^{2} g \,i^{2} n +6 B \,x^{4} \ln \left (e \left (\frac {b x +a}{d x +c}\right )^{n}\right ) b^{4} d^{4} g \,i^{2} n -36 A a \,b^{3} c^{3} d g \,i^{2} n +2 B \,x^{3} a \,b^{3} d^{4} g \,i^{2} n^{2}-2 B \,x^{3} b^{4} c \,d^{3} g \,i^{2} n^{2}+8 A \,x^{3} a \,b^{3} d^{4} g \,i^{2} n +16 A \,x^{3} b^{4} c \,d^{3} g \,i^{2} n +B \,x^{2} a^{2} b^{2} d^{4} g \,i^{2} n^{2}-5 B \,x^{2} b^{4} c^{2} d^{2} g \,i^{2} n^{2}+12 A \,x^{2} b^{4} c^{2} d^{2} g \,i^{2} n -2 B x \,a^{3} b \,d^{4} g \,i^{2} n^{2}-2 B x \,b^{4} c^{3} d g \,i^{2} n^{2}+8 B \ln \left (e \left (\frac {b x +a}{d x +c}\right )^{n}\right ) a \,b^{3} c^{3} d g \,i^{2} n +8 B \,x^{3} \ln \left (e \left (\frac {b x +a}{d x +c}\right )^{n}\right ) a \,b^{3} d^{4} g \,i^{2} n +16 B \,x^{3} \ln \left (e \left (\frac {b x +a}{d x +c}\right )^{n}\right ) b^{4} c \,d^{3} g \,i^{2} n +12 B \,x^{2} \ln \left (e \left (\frac {b x +a}{d x +c}\right )^{n}\right ) b^{4} c^{2} d^{2} g \,i^{2} n +24 A x a \,b^{3} c^{2} d^{2} g \,i^{2} n -8 B \ln \left (b x +a \right ) a^{3} b c \,d^{3} g \,i^{2} n^{2}+12 B \ln \left (b x +a \right ) a^{2} b^{2} c^{2} d^{2} g \,i^{2} n^{2}-8 B \ln \left (b x +a \right ) a \,b^{3} c^{3} d g \,i^{2} n^{2}+4 B \,x^{2} a \,b^{3} c \,d^{3} g \,i^{2} n^{2}+24 A \,x^{2} a \,b^{3} c \,d^{3} g \,i^{2} n +8 B x \,a^{2} b^{2} c \,d^{3} g \,i^{2} n^{2}-4 B x a \,b^{3} c^{2} d^{2} g \,i^{2} n^{2}-7 B \,a^{3} b c \,d^{3} g \,i^{2} n^{2}-8 B \,a^{2} b^{2} c^{2} d^{2} g \,i^{2} n^{2}+11 B a \,b^{3} c^{3} d g \,i^{2} n^{2}-2 B \ln \left (e \left (\frac {b x +a}{d x +c}\right )^{n}\right ) b^{4} c^{4} g \,i^{2} n +6 A \,x^{4} b^{4} d^{4} g \,i^{2} n +2 B \ln \left (b x +a \right ) b^{4} c^{4} g \,i^{2} n^{2}+2 B \ln \left (b x +a \right ) a^{4} d^{4} g \,i^{2} n^{2}+2 B \,b^{4} c^{4} g \,i^{2} n^{2}+2 B \,a^{4} d^{4} g \,i^{2} n^{2}-48 A \,a^{2} b^{2} c^{2} d^{2} g \,i^{2} n}{24 b^{3} d^{2} n}\) \(837\)

input
int((b*g*x+a*g)*(d*i*x+c*i)^2*(A+B*ln(e*((b*x+a)/(d*x+c))^n)),x,method=_RE 
TURNVERBOSE)
 
output
1/24*(24*B*x^2*ln(e*((b*x+a)/(d*x+c))^n)*a*b^3*c*d^3*g*i^2*n+24*B*x*ln(e*( 
(b*x+a)/(d*x+c))^n)*a*b^3*c^2*d^2*g*i^2*n+6*B*x^4*ln(e*((b*x+a)/(d*x+c))^n 
)*b^4*d^4*g*i^2*n-36*A*a*b^3*c^3*d*g*i^2*n+2*B*x^3*a*b^3*d^4*g*i^2*n^2-2*B 
*x^3*b^4*c*d^3*g*i^2*n^2+8*A*x^3*a*b^3*d^4*g*i^2*n+16*A*x^3*b^4*c*d^3*g*i^ 
2*n+B*x^2*a^2*b^2*d^4*g*i^2*n^2-5*B*x^2*b^4*c^2*d^2*g*i^2*n^2+12*A*x^2*b^4 
*c^2*d^2*g*i^2*n-2*B*x*a^3*b*d^4*g*i^2*n^2-2*B*x*b^4*c^3*d*g*i^2*n^2+8*B*l 
n(e*((b*x+a)/(d*x+c))^n)*a*b^3*c^3*d*g*i^2*n+8*B*x^3*ln(e*((b*x+a)/(d*x+c) 
)^n)*a*b^3*d^4*g*i^2*n+16*B*x^3*ln(e*((b*x+a)/(d*x+c))^n)*b^4*c*d^3*g*i^2* 
n+12*B*x^2*ln(e*((b*x+a)/(d*x+c))^n)*b^4*c^2*d^2*g*i^2*n+24*A*x*a*b^3*c^2* 
d^2*g*i^2*n-8*B*ln(b*x+a)*a^3*b*c*d^3*g*i^2*n^2+12*B*ln(b*x+a)*a^2*b^2*c^2 
*d^2*g*i^2*n^2-8*B*ln(b*x+a)*a*b^3*c^3*d*g*i^2*n^2+4*B*x^2*a*b^3*c*d^3*g*i 
^2*n^2+24*A*x^2*a*b^3*c*d^3*g*i^2*n+8*B*x*a^2*b^2*c*d^3*g*i^2*n^2-4*B*x*a* 
b^3*c^2*d^2*g*i^2*n^2-7*B*a^3*b*c*d^3*g*i^2*n^2-8*B*a^2*b^2*c^2*d^2*g*i^2* 
n^2+11*B*a*b^3*c^3*d*g*i^2*n^2-2*B*ln(e*((b*x+a)/(d*x+c))^n)*b^4*c^4*g*i^2 
*n+6*A*x^4*b^4*d^4*g*i^2*n+2*B*ln(b*x+a)*b^4*c^4*g*i^2*n^2+2*B*ln(b*x+a)*a 
^4*d^4*g*i^2*n^2+2*B*b^4*c^4*g*i^2*n^2+2*B*a^4*d^4*g*i^2*n^2-48*A*a^2*b^2* 
c^2*d^2*g*i^2*n)/b^3/d^2/n
 
3.2.19.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 530 vs. \(2 (236) = 472\).

Time = 0.40 (sec) , antiderivative size = 530, normalized size of antiderivative = 2.12 \[ \int (a g+b g x) (c i+d i x)^2 \left (A+B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )\right ) \, dx=\frac {6 \, A b^{4} d^{4} g i^{2} x^{4} + 2 \, {\left (6 \, B a^{2} b^{2} c^{2} d^{2} - 4 \, B a^{3} b c d^{3} + B a^{4} d^{4}\right )} g i^{2} n \log \left (b x + a\right ) + 2 \, {\left (B b^{4} c^{4} - 4 \, B a b^{3} c^{3} d\right )} g i^{2} n \log \left (d x + c\right ) - 2 \, {\left ({\left (B b^{4} c d^{3} - B a b^{3} d^{4}\right )} g i^{2} n - 4 \, {\left (2 \, A b^{4} c d^{3} + A a b^{3} d^{4}\right )} g i^{2}\right )} x^{3} - {\left ({\left (5 \, B b^{4} c^{2} d^{2} - 4 \, B a b^{3} c d^{3} - B a^{2} b^{2} d^{4}\right )} g i^{2} n - 12 \, {\left (A b^{4} c^{2} d^{2} + 2 \, A a b^{3} c d^{3}\right )} g i^{2}\right )} x^{2} + 2 \, {\left (12 \, A a b^{3} c^{2} d^{2} g i^{2} - {\left (B b^{4} c^{3} d + 2 \, B a b^{3} c^{2} d^{2} - 4 \, B a^{2} b^{2} c d^{3} + B a^{3} b d^{4}\right )} g i^{2} n\right )} x + 2 \, {\left (3 \, B b^{4} d^{4} g i^{2} x^{4} + 12 \, B a b^{3} c^{2} d^{2} g i^{2} x + 4 \, {\left (2 \, B b^{4} c d^{3} + B a b^{3} d^{4}\right )} g i^{2} x^{3} + 6 \, {\left (B b^{4} c^{2} d^{2} + 2 \, B a b^{3} c d^{3}\right )} g i^{2} x^{2}\right )} \log \left (e\right ) + 2 \, {\left (3 \, B b^{4} d^{4} g i^{2} n x^{4} + 12 \, B a b^{3} c^{2} d^{2} g i^{2} n x + 4 \, {\left (2 \, B b^{4} c d^{3} + B a b^{3} d^{4}\right )} g i^{2} n x^{3} + 6 \, {\left (B b^{4} c^{2} d^{2} + 2 \, B a b^{3} c d^{3}\right )} g i^{2} n x^{2}\right )} \log \left (\frac {b x + a}{d x + c}\right )}{24 \, b^{3} d^{2}} \]

input
integrate((b*g*x+a*g)*(d*i*x+c*i)^2*(A+B*log(e*((b*x+a)/(d*x+c))^n)),x, al 
gorithm="fricas")
 
output
1/24*(6*A*b^4*d^4*g*i^2*x^4 + 2*(6*B*a^2*b^2*c^2*d^2 - 4*B*a^3*b*c*d^3 + B 
*a^4*d^4)*g*i^2*n*log(b*x + a) + 2*(B*b^4*c^4 - 4*B*a*b^3*c^3*d)*g*i^2*n*l 
og(d*x + c) - 2*((B*b^4*c*d^3 - B*a*b^3*d^4)*g*i^2*n - 4*(2*A*b^4*c*d^3 + 
A*a*b^3*d^4)*g*i^2)*x^3 - ((5*B*b^4*c^2*d^2 - 4*B*a*b^3*c*d^3 - B*a^2*b^2* 
d^4)*g*i^2*n - 12*(A*b^4*c^2*d^2 + 2*A*a*b^3*c*d^3)*g*i^2)*x^2 + 2*(12*A*a 
*b^3*c^2*d^2*g*i^2 - (B*b^4*c^3*d + 2*B*a*b^3*c^2*d^2 - 4*B*a^2*b^2*c*d^3 
+ B*a^3*b*d^4)*g*i^2*n)*x + 2*(3*B*b^4*d^4*g*i^2*x^4 + 12*B*a*b^3*c^2*d^2* 
g*i^2*x + 4*(2*B*b^4*c*d^3 + B*a*b^3*d^4)*g*i^2*x^3 + 6*(B*b^4*c^2*d^2 + 2 
*B*a*b^3*c*d^3)*g*i^2*x^2)*log(e) + 2*(3*B*b^4*d^4*g*i^2*n*x^4 + 12*B*a*b^ 
3*c^2*d^2*g*i^2*n*x + 4*(2*B*b^4*c*d^3 + B*a*b^3*d^4)*g*i^2*n*x^3 + 6*(B*b 
^4*c^2*d^2 + 2*B*a*b^3*c*d^3)*g*i^2*n*x^2)*log((b*x + a)/(d*x + c)))/(b^3* 
d^2)
 
3.2.19.6 Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1054 vs. \(2 (233) = 466\).

Time = 83.82 (sec) , antiderivative size = 1054, normalized size of antiderivative = 4.22 \[ \int (a g+b g x) (c i+d i x)^2 \left (A+B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )\right ) \, dx=\text {Too large to display} \]

input
integrate((b*g*x+a*g)*(d*i*x+c*i)**2*(A+B*ln(e*((b*x+a)/(d*x+c))**n)),x)
 
output
Piecewise((a*c**2*g*i**2*x*(A + B*log(e*(a/c)**n)), Eq(b, 0) & Eq(d, 0)), 
(a*g*(A*c**2*i**2*x + A*c*d*i**2*x**2 + A*d**2*i**2*x**3/3 + B*c**3*i**2*l 
og(e*(a/(c + d*x))**n)/(3*d) + B*c**2*i**2*n*x/3 + B*c**2*i**2*x*log(e*(a/ 
(c + d*x))**n) + B*c*d*i**2*n*x**2/3 + B*c*d*i**2*x**2*log(e*(a/(c + d*x)) 
**n) + B*d**2*i**2*n*x**3/9 + B*d**2*i**2*x**3*log(e*(a/(c + d*x))**n)/3), 
 Eq(b, 0)), (c**2*i**2*(A*a*g*x + A*b*g*x**2/2 + B*a**2*g*log(e*(a/c + b*x 
/c)**n)/(2*b) - B*a*g*n*x/2 + B*a*g*x*log(e*(a/c + b*x/c)**n) - B*b*g*n*x* 
*2/4 + B*b*g*x**2*log(e*(a/c + b*x/c)**n)/2), Eq(d, 0)), (A*a*c**2*g*i**2* 
x + A*a*c*d*g*i**2*x**2 + A*a*d**2*g*i**2*x**3/3 + A*b*c**2*g*i**2*x**2/2 
+ 2*A*b*c*d*g*i**2*x**3/3 + A*b*d**2*g*i**2*x**4/4 + B*a**4*d**2*g*i**2*n* 
log(c/d + x)/(12*b**3) + B*a**4*d**2*g*i**2*log(e*(a/(c + d*x) + b*x/(c + 
d*x))**n)/(12*b**3) - B*a**3*c*d*g*i**2*n*log(c/d + x)/(3*b**2) - B*a**3*c 
*d*g*i**2*log(e*(a/(c + d*x) + b*x/(c + d*x))**n)/(3*b**2) - B*a**3*d**2*g 
*i**2*n*x/(12*b**2) + B*a**2*c**2*g*i**2*n*log(c/d + x)/(2*b) + B*a**2*c** 
2*g*i**2*log(e*(a/(c + d*x) + b*x/(c + d*x))**n)/(2*b) + B*a**2*c*d*g*i**2 
*n*x/(3*b) + B*a**2*d**2*g*i**2*n*x**2/(24*b) - B*a*c**3*g*i**2*n*log(c/d 
+ x)/(3*d) - B*a*c**2*g*i**2*n*x/6 + B*a*c**2*g*i**2*x*log(e*(a/(c + d*x) 
+ b*x/(c + d*x))**n) + B*a*c*d*g*i**2*n*x**2/6 + B*a*c*d*g*i**2*x**2*log(e 
*(a/(c + d*x) + b*x/(c + d*x))**n) + B*a*d**2*g*i**2*n*x**3/12 + B*a*d**2* 
g*i**2*x**3*log(e*(a/(c + d*x) + b*x/(c + d*x))**n)/3 + B*b*c**4*g*i**2...
 
3.2.19.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 740 vs. \(2 (236) = 472\).

Time = 0.20 (sec) , antiderivative size = 740, normalized size of antiderivative = 2.96 \[ \int (a g+b g x) (c i+d i x)^2 \left (A+B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )\right ) \, dx=\frac {1}{4} \, B b d^{2} g i^{2} x^{4} \log \left (e {\left (\frac {b x}{d x + c} + \frac {a}{d x + c}\right )}^{n}\right ) + \frac {1}{4} \, A b d^{2} g i^{2} x^{4} + \frac {2}{3} \, B b c d g i^{2} x^{3} \log \left (e {\left (\frac {b x}{d x + c} + \frac {a}{d x + c}\right )}^{n}\right ) + \frac {1}{3} \, B a d^{2} g i^{2} x^{3} \log \left (e {\left (\frac {b x}{d x + c} + \frac {a}{d x + c}\right )}^{n}\right ) + \frac {2}{3} \, A b c d g i^{2} x^{3} + \frac {1}{3} \, A a d^{2} g i^{2} x^{3} + \frac {1}{2} \, B b c^{2} g i^{2} x^{2} \log \left (e {\left (\frac {b x}{d x + c} + \frac {a}{d x + c}\right )}^{n}\right ) + B a c d g i^{2} x^{2} \log \left (e {\left (\frac {b x}{d x + c} + \frac {a}{d x + c}\right )}^{n}\right ) + \frac {1}{2} \, A b c^{2} g i^{2} x^{2} + A a c d g i^{2} x^{2} - \frac {1}{24} \, B b d^{2} g i^{2} n {\left (\frac {6 \, a^{4} \log \left (b x + a\right )}{b^{4}} - \frac {6 \, c^{4} \log \left (d x + c\right )}{d^{4}} + \frac {2 \, {\left (b^{3} c d^{2} - a b^{2} d^{3}\right )} x^{3} - 3 \, {\left (b^{3} c^{2} d - a^{2} b d^{3}\right )} x^{2} + 6 \, {\left (b^{3} c^{3} - a^{3} d^{3}\right )} x}{b^{3} d^{3}}\right )} + \frac {1}{3} \, B b c d g i^{2} n {\left (\frac {2 \, a^{3} \log \left (b x + a\right )}{b^{3}} - \frac {2 \, c^{3} \log \left (d x + c\right )}{d^{3}} - \frac {{\left (b^{2} c d - a b d^{2}\right )} x^{2} - 2 \, {\left (b^{2} c^{2} - a^{2} d^{2}\right )} x}{b^{2} d^{2}}\right )} + \frac {1}{6} \, B a d^{2} g i^{2} n {\left (\frac {2 \, a^{3} \log \left (b x + a\right )}{b^{3}} - \frac {2 \, c^{3} \log \left (d x + c\right )}{d^{3}} - \frac {{\left (b^{2} c d - a b d^{2}\right )} x^{2} - 2 \, {\left (b^{2} c^{2} - a^{2} d^{2}\right )} x}{b^{2} d^{2}}\right )} - \frac {1}{2} \, B b c^{2} g i^{2} n {\left (\frac {a^{2} \log \left (b x + a\right )}{b^{2}} - \frac {c^{2} \log \left (d x + c\right )}{d^{2}} + \frac {{\left (b c - a d\right )} x}{b d}\right )} - B a c d g i^{2} n {\left (\frac {a^{2} \log \left (b x + a\right )}{b^{2}} - \frac {c^{2} \log \left (d x + c\right )}{d^{2}} + \frac {{\left (b c - a d\right )} x}{b d}\right )} + B a c^{2} g i^{2} n {\left (\frac {a \log \left (b x + a\right )}{b} - \frac {c \log \left (d x + c\right )}{d}\right )} + B a c^{2} g i^{2} x \log \left (e {\left (\frac {b x}{d x + c} + \frac {a}{d x + c}\right )}^{n}\right ) + A a c^{2} g i^{2} x \]

input
integrate((b*g*x+a*g)*(d*i*x+c*i)^2*(A+B*log(e*((b*x+a)/(d*x+c))^n)),x, al 
gorithm="maxima")
 
output
1/4*B*b*d^2*g*i^2*x^4*log(e*(b*x/(d*x + c) + a/(d*x + c))^n) + 1/4*A*b*d^2 
*g*i^2*x^4 + 2/3*B*b*c*d*g*i^2*x^3*log(e*(b*x/(d*x + c) + a/(d*x + c))^n) 
+ 1/3*B*a*d^2*g*i^2*x^3*log(e*(b*x/(d*x + c) + a/(d*x + c))^n) + 2/3*A*b*c 
*d*g*i^2*x^3 + 1/3*A*a*d^2*g*i^2*x^3 + 1/2*B*b*c^2*g*i^2*x^2*log(e*(b*x/(d 
*x + c) + a/(d*x + c))^n) + B*a*c*d*g*i^2*x^2*log(e*(b*x/(d*x + c) + a/(d* 
x + c))^n) + 1/2*A*b*c^2*g*i^2*x^2 + A*a*c*d*g*i^2*x^2 - 1/24*B*b*d^2*g*i^ 
2*n*(6*a^4*log(b*x + a)/b^4 - 6*c^4*log(d*x + c)/d^4 + (2*(b^3*c*d^2 - a*b 
^2*d^3)*x^3 - 3*(b^3*c^2*d - a^2*b*d^3)*x^2 + 6*(b^3*c^3 - a^3*d^3)*x)/(b^ 
3*d^3)) + 1/3*B*b*c*d*g*i^2*n*(2*a^3*log(b*x + a)/b^3 - 2*c^3*log(d*x + c) 
/d^3 - ((b^2*c*d - a*b*d^2)*x^2 - 2*(b^2*c^2 - a^2*d^2)*x)/(b^2*d^2)) + 1/ 
6*B*a*d^2*g*i^2*n*(2*a^3*log(b*x + a)/b^3 - 2*c^3*log(d*x + c)/d^3 - ((b^2 
*c*d - a*b*d^2)*x^2 - 2*(b^2*c^2 - a^2*d^2)*x)/(b^2*d^2)) - 1/2*B*b*c^2*g* 
i^2*n*(a^2*log(b*x + a)/b^2 - c^2*log(d*x + c)/d^2 + (b*c - a*d)*x/(b*d)) 
- B*a*c*d*g*i^2*n*(a^2*log(b*x + a)/b^2 - c^2*log(d*x + c)/d^2 + (b*c - a* 
d)*x/(b*d)) + B*a*c^2*g*i^2*n*(a*log(b*x + a)/b - c*log(d*x + c)/d) + B*a* 
c^2*g*i^2*x*log(e*(b*x/(d*x + c) + a/(d*x + c))^n) + A*a*c^2*g*i^2*x
 
3.2.19.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1997 vs. \(2 (236) = 472\).

Time = 1.00 (sec) , antiderivative size = 1997, normalized size of antiderivative = 7.99 \[ \int (a g+b g x) (c i+d i x)^2 \left (A+B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )\right ) \, dx=\text {Too large to display} \]

input
integrate((b*g*x+a*g)*(d*i*x+c*i)^2*(A+B*log(e*((b*x+a)/(d*x+c))^n)),x, al 
gorithm="giac")
 
output
-1/24*(2*(B*b^6*c^5*g*i^2*n - 5*B*a*b^5*c^4*d*g*i^2*n - 4*(b*x + a)*B*b^5* 
c^5*d*g*i^2*n/(d*x + c) + 10*B*a^2*b^4*c^3*d^2*g*i^2*n + 20*(b*x + a)*B*a* 
b^4*c^4*d^2*g*i^2*n/(d*x + c) - 10*B*a^3*b^3*c^2*d^3*g*i^2*n - 40*(b*x + a 
)*B*a^2*b^3*c^3*d^3*g*i^2*n/(d*x + c) + 5*B*a^4*b^2*c*d^4*g*i^2*n + 40*(b* 
x + a)*B*a^3*b^2*c^2*d^4*g*i^2*n/(d*x + c) - B*a^5*b*d^5*g*i^2*n - 20*(b*x 
 + a)*B*a^4*b*c*d^5*g*i^2*n/(d*x + c) + 4*(b*x + a)*B*a^5*d^6*g*i^2*n/(d*x 
 + c))*log((b*x + a)/(d*x + c))/(b^4*d^2 - 4*(b*x + a)*b^3*d^3/(d*x + c) + 
 6*(b*x + a)^2*b^2*d^4/(d*x + c)^2 - 4*(b*x + a)^3*b*d^5/(d*x + c)^3 + (b* 
x + a)^4*d^6/(d*x + c)^4) - (B*b^8*c^5*g*i^2*n - 5*B*a*b^7*c^4*d*g*i^2*n - 
 6*(b*x + a)*B*b^7*c^5*d*g*i^2*n/(d*x + c) + 10*B*a^2*b^6*c^3*d^2*g*i^2*n 
+ 30*(b*x + a)*B*a*b^6*c^4*d^2*g*i^2*n/(d*x + c) + 7*(b*x + a)^2*B*b^6*c^5 
*d^2*g*i^2*n/(d*x + c)^2 - 10*B*a^3*b^5*c^2*d^3*g*i^2*n - 60*(b*x + a)*B*a 
^2*b^5*c^3*d^3*g*i^2*n/(d*x + c) - 35*(b*x + a)^2*B*a*b^5*c^4*d^3*g*i^2*n/ 
(d*x + c)^2 - 2*(b*x + a)^3*B*b^5*c^5*d^3*g*i^2*n/(d*x + c)^3 + 5*B*a^4*b^ 
4*c*d^4*g*i^2*n + 60*(b*x + a)*B*a^3*b^4*c^2*d^4*g*i^2*n/(d*x + c) + 70*(b 
*x + a)^2*B*a^2*b^4*c^3*d^4*g*i^2*n/(d*x + c)^2 + 10*(b*x + a)^3*B*a*b^4*c 
^4*d^4*g*i^2*n/(d*x + c)^3 - B*a^5*b^3*d^5*g*i^2*n - 30*(b*x + a)*B*a^4*b^ 
3*c*d^5*g*i^2*n/(d*x + c) - 70*(b*x + a)^2*B*a^3*b^3*c^2*d^5*g*i^2*n/(d*x 
+ c)^2 - 20*(b*x + a)^3*B*a^2*b^3*c^3*d^5*g*i^2*n/(d*x + c)^3 + 6*(b*x + a 
)*B*a^5*b^2*d^6*g*i^2*n/(d*x + c) + 35*(b*x + a)^2*B*a^4*b^2*c*d^6*g*i^...
 
3.2.19.9 Mupad [B] (verification not implemented)

Time = 1.78 (sec) , antiderivative size = 661, normalized size of antiderivative = 2.64 \[ \int (a g+b g x) (c i+d i x)^2 \left (A+B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )\right ) \, dx=\ln \left (e\,{\left (\frac {a+b\,x}{c+d\,x}\right )}^n\right )\,\left (B\,a\,c^2\,g\,i^2\,x+\frac {B\,c\,g\,i^2\,x^2\,\left (2\,a\,d+b\,c\right )}{2}+\frac {B\,d\,g\,i^2\,x^3\,\left (a\,d+2\,b\,c\right )}{3}+\frac {B\,b\,d^2\,g\,i^2\,x^4}{4}\right )+x^3\,\left (\frac {d\,g\,i^2\,\left (8\,A\,a\,d+12\,A\,b\,c+B\,a\,d\,n-B\,b\,c\,n\right )}{12}-\frac {A\,d\,g\,i^2\,\left (12\,a\,d+12\,b\,c\right )}{36}\right )+x\,\left (\frac {\left (12\,a\,d+12\,b\,c\right )\,\left (\frac {\left (\frac {d\,g\,i^2\,\left (8\,A\,a\,d+12\,A\,b\,c+B\,a\,d\,n-B\,b\,c\,n\right )}{4}-\frac {A\,d\,g\,i^2\,\left (12\,a\,d+12\,b\,c\right )}{12}\right )\,\left (12\,a\,d+12\,b\,c\right )}{12\,b\,d}-\frac {g\,i^2\,\left (3\,A\,a^2\,d^2+9\,A\,b^2\,c^2+B\,a^2\,d^2\,n-2\,B\,b^2\,c^2\,n+18\,A\,a\,b\,c\,d+B\,a\,b\,c\,d\,n\right )}{3\,b}+A\,a\,c\,d\,g\,i^2\right )}{12\,b\,d}-\frac {a\,c\,\left (\frac {d\,g\,i^2\,\left (8\,A\,a\,d+12\,A\,b\,c+B\,a\,d\,n-B\,b\,c\,n\right )}{4}-\frac {A\,d\,g\,i^2\,\left (12\,a\,d+12\,b\,c\right )}{12}\right )}{b\,d}+\frac {c\,g\,i^2\,\left (6\,A\,a^2\,d^2+2\,A\,b^2\,c^2+2\,B\,a^2\,d^2\,n-B\,b^2\,c^2\,n+12\,A\,a\,b\,c\,d-B\,a\,b\,c\,d\,n\right )}{2\,b\,d}\right )-x^2\,\left (\frac {\left (\frac {d\,g\,i^2\,\left (8\,A\,a\,d+12\,A\,b\,c+B\,a\,d\,n-B\,b\,c\,n\right )}{4}-\frac {A\,d\,g\,i^2\,\left (12\,a\,d+12\,b\,c\right )}{12}\right )\,\left (12\,a\,d+12\,b\,c\right )}{24\,b\,d}-\frac {g\,i^2\,\left (3\,A\,a^2\,d^2+9\,A\,b^2\,c^2+B\,a^2\,d^2\,n-2\,B\,b^2\,c^2\,n+18\,A\,a\,b\,c\,d+B\,a\,b\,c\,d\,n\right )}{6\,b}+\frac {A\,a\,c\,d\,g\,i^2}{2}\right )+\frac {\ln \left (c+d\,x\right )\,\left (B\,b\,c^4\,g\,i^2\,n-4\,B\,a\,c^3\,d\,g\,i^2\,n\right )}{12\,d^2}+\frac {\ln \left (a+b\,x\right )\,\left (B\,g\,n\,a^4\,d^2\,i^2-4\,B\,g\,n\,a^3\,b\,c\,d\,i^2+6\,B\,g\,n\,a^2\,b^2\,c^2\,i^2\right )}{12\,b^3}+\frac {A\,b\,d^2\,g\,i^2\,x^4}{4} \]

input
int((a*g + b*g*x)*(c*i + d*i*x)^2*(A + B*log(e*((a + b*x)/(c + d*x))^n)),x 
)
 
output
log(e*((a + b*x)/(c + d*x))^n)*(B*a*c^2*g*i^2*x + (B*c*g*i^2*x^2*(2*a*d + 
b*c))/2 + (B*d*g*i^2*x^3*(a*d + 2*b*c))/3 + (B*b*d^2*g*i^2*x^4)/4) + x^3*( 
(d*g*i^2*(8*A*a*d + 12*A*b*c + B*a*d*n - B*b*c*n))/12 - (A*d*g*i^2*(12*a*d 
 + 12*b*c))/36) + x*(((12*a*d + 12*b*c)*((((d*g*i^2*(8*A*a*d + 12*A*b*c + 
B*a*d*n - B*b*c*n))/4 - (A*d*g*i^2*(12*a*d + 12*b*c))/12)*(12*a*d + 12*b*c 
))/(12*b*d) - (g*i^2*(3*A*a^2*d^2 + 9*A*b^2*c^2 + B*a^2*d^2*n - 2*B*b^2*c^ 
2*n + 18*A*a*b*c*d + B*a*b*c*d*n))/(3*b) + A*a*c*d*g*i^2))/(12*b*d) - (a*c 
*((d*g*i^2*(8*A*a*d + 12*A*b*c + B*a*d*n - B*b*c*n))/4 - (A*d*g*i^2*(12*a* 
d + 12*b*c))/12))/(b*d) + (c*g*i^2*(6*A*a^2*d^2 + 2*A*b^2*c^2 + 2*B*a^2*d^ 
2*n - B*b^2*c^2*n + 12*A*a*b*c*d - B*a*b*c*d*n))/(2*b*d)) - x^2*((((d*g*i^ 
2*(8*A*a*d + 12*A*b*c + B*a*d*n - B*b*c*n))/4 - (A*d*g*i^2*(12*a*d + 12*b* 
c))/12)*(12*a*d + 12*b*c))/(24*b*d) - (g*i^2*(3*A*a^2*d^2 + 9*A*b^2*c^2 + 
B*a^2*d^2*n - 2*B*b^2*c^2*n + 18*A*a*b*c*d + B*a*b*c*d*n))/(6*b) + (A*a*c* 
d*g*i^2)/2) + (log(c + d*x)*(B*b*c^4*g*i^2*n - 4*B*a*c^3*d*g*i^2*n))/(12*d 
^2) + (log(a + b*x)*(B*a^4*d^2*g*i^2*n + 6*B*a^2*b^2*c^2*g*i^2*n - 4*B*a^3 
*b*c*d*g*i^2*n))/(12*b^3) + (A*b*d^2*g*i^2*x^4)/4